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Abstract. The Kadometsev-Petviashvili (KP) and modified KP (mKP) equations are retrieved from the
first two soliton equations of coupled Korteweg-de Vries (cKdV) hierarchy. Based on the nonlinearization of
Lax pairs, the KP and mKP equations are ultimately reduced to integrable finite-dimensional Hamiltonian
systems in view of the r-matrix theory. Finally, the resulting Hamiltonian flows are linearized in Abel-Jacobi
coordinates, such that some specially explicit quasi-periodic solutions to the KP and mKP equations are
synchronously given in terms of theta functions through the Jacobi inversion.

PACS. 02.30.IK Integrable systems – 02.30.Jr Partial differential equations

1 Introduction

Integrable models play a prominent role in theoretical
physics. The reason is not only the direct phenomenolog-
ical interest of some of them, but also the fact that they
often provide some deep insights into the mathematical
structure of theory in which they arise. Up to now, the
(1+1)-dimensional integrable models are well understood
due to many systematic methods such as the inverse scat-
tering transformation, the dressing method, the Darboux
transformation and the algebro-geometric method [1–7].
However, studies of the (2+1)-dimensional cases are fewer
in number and such systems are being actively investi-
gated from different viewpoints. Recently, it is worthwhile
to mention that the nonlinearization of Lax pairs [8,9]
has been generalized to study multi-dimensional nonlin-
ear evolution equations consisting of three steps: decom-
position, linearization and inversion of the flows [10–15].
The most important message relating to the progress of
this manipulation is that compatible solutions of soliton
equations naturally give rise to the solutions of (2+1)-
dimensional nonlinear evolution equations [16,17].

In this paper the well-known KP [18] and mKP [19]
equations are simultaneously studied from a different de-
composition and generalized treatment. The main ob-
jective is to display their underlying linear behavior on
a Riemann surface of hyperelliptic curve, and further
give some new quasi-periodic solutions exhibiting the
characteristic of Liouville integrability. This current pa-
per extends the above-mentioned fruitful method [10–15]
deriving quasi-periodic solutions for multi-dimensional
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nonlinear evolution equations. Here the techniques in-
volved are the theory of algebraic curves, the r-matrix the-
ory and the nonlinearization of Lax pairs. In particular, it
is in this constructive framework that the KP and mKP
equations can be settled simultaneously with the help of
the cKdV soliton hierarchy. Details of the organization
of the present paper are as follows. In Section 2, the KP
and mKP equations are recovered from the first two non-
trivial members in the cKdV soliton hierarchy. This im-
plies that (2+1)-dimensional systems are decomposed into
(1+1)-dimensional systems that are easier to treat with
some available tools. Section 3 further reduces the corre-
sponding (1+1)-dimensional systems into integrable finite-
dimensional Hamiltonian systems (FDHSs) by means of
the Bargmann constraint. In Section 4, Abel-Jacobi co-
ordinates are introduced to straighten out the resulting
Hamiltonian flows, indicating their underlying linearities
in the form of Abel-Jacobi variables. The Jacobi inversion
for writing out theta function solutions to the KP and
mKP equations is the subject of Section 5.

2 An alternative construction of the KP
and mKP equations

In this section, we briefly recollect some necessary formu-
lae and deduce the KP and mKP equations. We start with
the cKdV spectral problem [20,21],

ϕx = Uϕ, U =

(− 1
2λ + 1

2u −v

1 1
2λ − 1

2u

)
, ϕ =

(
ϕ1

ϕ2

)
,

(2.1)
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where λ is a constant spectral parameter; and u, v are two
potentials. Consider the stationary zero-curvature equa-
tion of (2.1),

Vx = [U, V ], V =

(
a b

c −a

)
=
∑
j≥0

(
aj bj

cj −aj

)
λ−j ,

(2.2)
which are in agreement with

aj = −∂−1(vcj + bj),(
bj+1

cj+1

)
=

(−∂ + u − 2v∂−1 −2v∂−1v

2∂−1 ∂ + u + 2∂−1v

)(
bj

cj

)
,

(2.3)
where ∂ = ∂/∂x, ∂∂−1 = ∂−1∂ = 1. Designating initial
values by

a0 =
1
2
, b0 = c0 = 0,

which together with (2.3) yields

a1 = 0, b1 = v, c1 = −1,

a2 = v, b2 = −vx + uv, c2 = −u,

a3 = 2uv − vx, b3 = vxx − uxv

− 2uvx + u2v + 2v2, c3 = −ux − u2 − 2v,

a4 = vxx + 3v2 − 3uvx + 3u2v,

b4 = −vxxx + uxxv + 3uxvx + 3uvxx

− 3u2vx − 3uuxv + 6uv2 − 6vvx + u3v,

c4 = −uxx − 3uux − u3 − 6uv. (2.4)

To deduce the cKdV soliton hierarchy, let us introduce an
auxiliary spectral problem of (2.1),

ϕtn = V (n)ϕ, V (n) =

⎛
⎝V

(n)
11 V

(n)
12

V
(n)
21 −V

(n)
11

⎞
⎠ , n ≥ 1,

(2.5)
where

V
(n)
11 =

1
2
cn+1 +

n∑
j=0

ajλ
n−j ,

V
(n)
12 =

n∑
j=0

bjλ
n−j ,

V
(n)
21 =

n∑
j=0

cjλ
n−j .

The compatibility condition of (2.1) and (2.5), i.e. ϕxtn =
ϕtnx, leads to the zero-curvature equation

Utn − V (n)
x +

[
U, V (n)

]
= 0, (2.6)

which is the cKdV soliton hierarchy

(
u
v

)
tn

=

(
0 −∂

−∂ 0

)(
an+1

−cn+1

)
� Jgn−1, n ≥ 1.

(2.7)
After a direct calculation, it is easy to list the cKdV equa-
tion and the next one with y = t2 and t = t3 respectively,{

uy = −uxx − 2uux − 2vx,

vy = vxx − 2uxv − 2uvx,
(2.8)

{
ut = −uxxx − 3(uux + 2uv)x − 3u2ux,

vt = −vxxx + 3(uvx − u2v)x − 6vvx.
(2.9)

Actually the cKdV equation (2.8) is the compatibility con-
dition of (2.1) and

ϕy = V (2)ϕ,

V (2) =

(
1
2λ2 − 1

2ux − 1
2u2 λv − vx + uv

−λ − u − 1
2λ2 + 1

2ux + 1
2u2

)
,

(2.10)

while (2.9) is the compatibility condition of (2.1) and

ϕt = V (3)ϕ, V (3) =

⎛
⎝V

(3)
11 V

(3)
12

V
(3)
21 −V

(3)
11

⎞
⎠ , (2.11)

with

V
(3)
11 =

1
2
λ3 + λv − 1

2
uxx − 3

2
uux − 1

2
u3 − uv − vx,

V
(3)
12 = λ2v − λvx + λuv + vxx − uxv − 2uvx + u2v + 2v2,

V
(3)
21 = −λ2 − λu − ux − u2 − 2v.

Let u, v be the compatible solutions of (2.8) and (2.9), and

g = u(x, y, t), h = v(x, y, t). (2.12)

From (2.8) and (2.12), a direct calculation delivers

∂−1
x gy = −gx − g2 − 2h,

∂−1
x gyy = gxxx + 2g2

x + 4ggxx + 4g2gx + 8ghx + 4gxh,
∂−1

x hy = hx − 2gh,
∂−1

x hyy = hxxx − 4gxhx − 4ghxx + 8ggxh + 4hhx + 4g2hx.
(2.13)

Combining (2.13) and (2.9) gives the following
(2+1)-dimensional nonlinear evolution equations,

gt = −1
4
(gxx − 2g3)x − 3

4
(∂−1

x gyy − 2gx∂−1
x gy), (2.14)

ht = −1
4
hxxx − 3hhx − 3

4
∂−1

x hyy. (2.15)

It is remarkable to see that (2.14) is the mKP equation
and (2.15) is the KP equation, which are closely related to
soliton equations (2.8) and (2.9). Noting the compatibility
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of (2.8) and (2.9) in the same soliton hierarchy (we will
return later to the compatibility), it suggests that (2.12)
solves (2.14) and (2.15) simultaneously.

Remark: Though the coefficients of (2.14)
and (2.15) are different from their presentations in
the literatures [18,19]; in fact, they are identical to each
other in view of a simple linear transformation with
regard to the scalars x, y and t.

3 The associated Hamiltonian systems

This section applies the nonlinearization of Lax pairs to
the cKdV spectral problem and its auxiliary spectral prob-
lem such that the resulting (2+1)-dimensional systems
are ultimately reduced into three integrable FDHSs. Let
λ1, λ2, · · · , λN be N distinct eigenvalues and ϕ = (pj , qj)T

be the eigenfunction. We take N copies of the spectral
problem (2.1),(

pj

qj

)
x

=
(− 1

2λj + 1
2u −v

1 1
2λj − 1

2u

)(
pj

qj

)
, 1 ≤ j ≤ N.

(3.1)
A simple computation provides [21]

∇λj = (δλj/δu, δλj/δv)T =
(−pjqj , q

2
j

)T
. (3.2)

Taking into consideration the Bargmann constraint [8,9],

g0 =
N∑

j=1

∇λj , (3.3)

which gives rise to

u = 〈q, q〉, v = −〈p, q〉, (3.4)

where p = (p1, · · · , pN )T , q = (q1, · · · , qN )T , and 〈·, ·〉
stands for the standard inner product in R

N . According
to the principle of the nonlinearization of Lax pairs, sub-
mitting (3.4) into (3.1) gives the following FDHS{

px = − 1
2Λp + 1

2 〈q, q〉p + 〈p, q〉q = −∂H0
∂q ,

qx = p + 1
2Λq − 1

2 〈q, q〉q = ∂H0
∂p ,

(3.5)

where Λ = diag(λ1, · · · , λN ), and

H0 =
1
2
(〈p, p〉 + 〈Λp, q〉 − 〈p, q〉〈q, q〉). (3.6)

Analogously we nonlinearize the temporal parts of the soli-
ton hierarchy. Utilizing (2.10), (2.11), (3.4) and (3.5), it is
not difficult to obtain, respectively,

⎧⎪⎪⎨
⎪⎪⎩

py = 1
2Λ2p − 〈p, q〉p − 1

2 〈Λq, q〉p
−〈p, q〉Λq + 〈p, p〉q = −∂H1

∂q ,

qy = −Λp − 〈q, q〉p − 1
2Λ2q + 〈p, q〉q

+ 1
2 〈Λq, q〉q = ∂H1

∂p ,

(3.7)

with

H1 = −1
2
(〈

Λ2p, q
〉− 〈p, q〉2 − 〈Λq, q〉〈p, q〉

+〈p, p〉〈q, q〉 + 〈Λp, p〉) , (3.8)

and⎧⎪⎪⎨
⎪⎪⎩

pt = 1
2Λ3p−〈p, q〉Λp−〈Λp, q〉p− 1

2 〈Λ2q, q〉p − 〈p, q〉Λ2q
+〈p, p〉Λq + 〈Λp, p〉q = −∂H2

∂q ,

qt = −Λ2p − 〈q, q〉Λp − 〈Λq, q〉p − 1
2Λ3q + 〈p, q〉Λq

+〈Λp, q〉q + 1
2 〈Λ2q, q〉q = ∂H2

∂p ,

(3.9)
with

H2 = − 1
2 (〈Λ3p, q〉 − 〈Λ2q, q〉〈p, q〉 + 〈p, p〉〈Λq, q〉

+〈Λp, p〉〈q, q〉 + 〈Λ2p, p〉) + 〈p, q〉〈Λp, q〉. (3.10)

Summing up these discussions, a direct calculation imply-
ing that (2.14) and (2.15) are satisfied by (3.4) with the
help of (3.5), (3.7) and (3.9) is formulated as below.

Proposition 1 Let (p(x, y, t), q(x, y, t))T be the compat-
ible solution of H0, H1 and H2. Then g(x, y, t) = 〈q, q〉
solves the mKP equation; h(x, y, t) = −〈p, q〉 solves the
KP equation.

In what follows, we are in a position to show the Liouville
integrability of the resulting FDHSs. In a similar way to
the treatment of [22], a lengthy calculation gives the fol-
lowing Lax equations, which play an important role in our
argument.

Proposition 2 The FDHSs (3.5), (3.7) and (3.9) admit-
ting a Lax representation L(λ) enjoy Lax equations, re-
spectively,

Lx(λ) = [Ū , L(λ)],

Ly(λ) = [V̄ (2), L(λ)],

Lt(λ) = [V̄ (3), L(λ)], (3.11)

where

L(λ) =
(

1
2λ −〈p, q〉
−1 − 1

2λ

)
+

N∑
j=1

1
λ − λj

(−pjqj p2
j

−q2
j pjqj

)

�
(

A(λ) B(λ)
C(λ) −A(λ)

)
, (3.12)

Ū =
(− 1

2λ + 1
2 〈q, q〉 〈p, q〉

1 1
2λ − 1

2 〈q, q〉
)

, (3.13)

V̄ (2) =(
1
2λ2 − 〈p, q〉 − 1

2 〈Λq, q〉 −λ〈p, q〉 + 〈p, p〉
−λ − 〈q, q〉 − 1

2λ2 + 〈p, q〉 + 1
2 〈Λq, q〉

)
,

(3.14)
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and

V̄ (3) =(
V̄

(3)
11 −λ2〈p, q〉 + λ〈p, p〉 + 〈Λp, p〉

−λ2 − λ〈q, q〉 − 〈Λq, q〉 −V̄
(3)
11

)
,

(3.15)

with

V̄
(3)
11 =

1
2
λ3 − λ〈p, q〉 − 〈Λp, q〉 − 1

2
〈Λ2q, q〉.

To prove the Liouville integrability, we first recall some
fundamental concepts. The Poisson bracket of two func-
tions F and G in the symplectic space (R2N , dp ∧ dq) is
defined as [25]

{F, G} =
N∑

j=1

(
∂F

∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj

)
=
〈

∂F

∂q
,
∂G

∂p

〉
−
〈

∂F

∂p
,
∂G

∂q

〉
.

An immediate consequence is that (3.5), (3.7) and (3.9)
can be rewritten as, respectively,

px = {p, H0}, qx = {q, H0},
py = {p, H1}, qy = {q, H1},
pt = {p, H2}, qt = {q, H2}.

Denoting the standard notation [23] by

L1(λ) = L(λ) ⊗ I, L2(µ) = I ⊗ L(µ),

where I is the 2 × 2 unit matrix, and

{L1(λ), L2(µ)}jk,mn =
{
L1(λ)jm, L2(µ)kn

}
.

Therefore, in the standard symplectic structure
(R2N , dp ∧ dq), it is not difficult to check that L(λ)
satisfies a classical r-matrix formula

{L1(λ), L2(µ)} = [r12(λ, µ), L1(λ)] + [r21(λ, µ), L2(µ)],
(3.16)

where

r12 =
2

µ − λ
P + Q12, r21 =

2
µ − λ

P + Q21, (3.17)

with

P =

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟⎠ ,

Q12 =

⎛
⎜⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

⎞
⎟⎟⎟⎠ , Q21 =

⎛
⎜⎜⎜⎝

0 0 −1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ .

From [24], it is immediately shown that

{detL(λ), det L(µ)} = 0. (3.18)

On the other hand, detL(λ) can be rewritten as

detL(λ) = −1
4
λ2 +

N∑
j=1

Ej

λ − λj
, (3.19)

where

Ej = p2
j + λjpjqj − 〈p, q〉q2

j +
N∑

i=1,i�=j

(pjqi − piqj)2

λj − λi
,

j = 1, 2, · · · , N.

From (3.18), it is clear that

{Ej , Ek} = 0, 1 ≤ j, k ≤ N.

Simply taking Fk =
∑N

j=1 λk
j Ej , it is known that all

Hamiltonian systems (R2N , dp∧dq, Fk) are completely in-
tegrable in the Liouville sense. Noting that

H0 =
1
2
F0, H1 = −1

2
F1, H2 = −1

2
F2,

we conclude the following theorem.

Theorem 1 The FDHSs (3.5), (3.7) and (3.9) are com-
pletely integrable in the Liouville sense.

Note. Due to the involutivity of H0, H1 and H2, the
corresponding flows mutually commute [25]; this grants
the compatibility of (3.5), (3.7) and (3.9).

4 Straightening out the Hamiltonian flows

Firstly we introduce two sets of elliptic coordinates
µ1, µ2, · · · , µN and ν1, ν2, · · · , νN for the integrable
FDHSs (3.5), (3.7) and (3.9) from L(λ) [26,27],

B(λ) = −〈p, q〉 +
N∑

j=1

p2
j

λ−λj
= −〈p, q〉m(λ)

a(λ) ,

C(λ) = −1 −
N∑

j=1

q2
j

λ−λj
= −n(λ)

a(λ) ,

(4.1)

where

a(λ) =
N∏

k=1

(λ − λk),

m(λ) =
N∏

k=1

(λ − µk),

n(λ) =
N∏

k=1

(λ − νk). (4.2)
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Resorting to (4.1) and (4.2), it is easy to calculate that

〈p, p〉
〈p, q〉 = σ1 − σ, 〈q, q〉 = σ − σ2, (4.3)

where

σ =
N∑

j=1

λj , σ1 =
N∑

j=1

µj , σ2 =
N∑

j=1

νj .

Noting (2.12) and (3.4), a simple calculation delivers

g = −σ2 + σ, ∂ ln h = σ1 − σ2. (4.4)

The combination of (4.1) and (4.2) also implies that

V̄
(2)
12 = v(λ − σ1 + σ), V̄

(2)
21 = −λ + σ2 − σ, (4.5){

V̄
(3)
12 = v(λ2 − (λ + σ)(σ1 − σ) − σ̄ + σ̄1),

V̄
(3)
21 = −λ2 + (λ + σ)(σ2 − σ) − σ̄2 + σ̄,

(4.6)

where

σ̄ =
N∑

i,j=1,i〈j
λiλj , σ̄1 =

N∑
i,j=1,i〈j

µiµj , σ̄2 =
N∑

i,j=1,i〈j
νiνj .

(4.7)
To go on, let us define

detL(λ) = −A(λ)2 − B(λ)C(λ) = − b(λ)
4a(λ)

= − R(λ)
4a2(λ)

,

(4.8)
where

b(λ) =
N+2∏
k=1

(λ − λN+k),

R(λ) = a(λ)b(λ) =
2N+2∏
k=1

(λ − λk).

Recalling (4.1), we have

A(µk) =

√
R(µk)

2a(µk)
, A(νk) =

√
R(νk)

2a(νk)
, 1 ≤ k ≤ N.

(4.9)
From (4.1)1, it is apparent that

dB

dx

∣∣∣∣
µk

= 〈p, q〉

N∏
i=1,i�=k

(µk − µi)

a(µk)
dµk

dx
. (4.10)

Appealing to the Lax equation (3.11)1, we derive the evo-
lution equation of elliptic coordinate µk with respect to
the variable x

dµk

dx
= −

√
R(µk)

N∏
i=1,i�=k

(µk − µi)
, 1 ≤ k ≤ N. (4.11)

In a similar way, we arrive at

dνk

dx
=

√
R(νk)

N∏
i=1,i�=k

(νk − νi)
, 1 ≤ k ≤ N. (4.12)

Analogously we achieve the evolution equations of all µk

and νk in variables y and t,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dµk

dy = (µk−σ1+σ)
√

R(µk)
N∏

i=1,i�=k

(µk−µi)

,

dνk

dy = (−νk+σ2−σ)
√

R(νk)
N∏

i=1,i�=k

(νk−νi)

,
1 ≤ k ≤ N, (4.13)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dµk

dt =
√

R(µk)
N∏

i=1,i�=k

(µk−µi)

(
µ2

k − (µk + σ)

× (σ1 − σ) − σ̄ + σ̄1

)
,

dνk

dt =
√

R(νk)
N∏

i=1,i�=k

(νk−νi)

(
− ν2

k + (νk + σ)

× (σ2 − σ) − σ̄2 + σ̄
)
,

1 ≤ k ≤ N.

(4.14)
Next we are ready to linearize the Hamiltonian flows. For
this purpose let us introduce the Riemann surface Γ of hy-
perelliptic curve given by the affine equation ξ2 = R(λ),
which is the genus of N . For the same λ, there exist
two points (λ,

√
R(λ)) and (λ,−√R(λ)) on the upper

and lower sheets of Γ. In addition, there are two infi-
nite points that are not the branch points because of
degR(λ) = 2N + 2. Under an alternative local coordi-
nate z = λ−1, they are viewed as ∞1 = (0, 1) and
∞2 = (0,−1). We fix a set of regular cycle paths on Γ:
a1, a2, · · · , aN ; b1, b2, · · · , bN , which are independent and
have intersection numbers as

ai ◦ aj = bi ◦ bj = 0, ai ◦ bj = δij , i, j = 1, 2, · · · , N.

It is known that

ω̃l =
λl−1dλ√

R(λ)
, 1 ≤ l ≤ N,

are N linearly independent homomorphic differentials of
Γ. Defining

Aij =
∫

aj

ω̃i, C = (Aij)−1, 1 ≤ i, j ≤ N, (4.15)

whence, we obtain a new normalized basis ωj

ωj =
N∑

l=1

Cjlω̃l,

∫
ai

ωj =
N∑

l=1

Cjl

×
∫

ai

ω̃l =
N∑

l=1

CjlAli = δji,
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and defining

Bij =
∫

bj

ωi, 1 ≤ i, j ≤ N,

a matrix that will be used later to construct the Riemann
theta functions of Γ. Having a fixed point p0, the
Abel-Jacobi coordinates are defined as

ρ
(1)
j (x, y, t) =

N∑
k=1

∫ µk(x,y,t)

p0
ωj

=
N∑

k=1

N∑
l=1

Cjl

∫ µk

p0

λl−1dλ√
R(λ)

,

ρ
(2)
j (x, y, t) =

N∑
k=1

∫ νk(x,y,t)

p0
ωj

=
N∑

k=1

N∑
l=1

Cjl

∫ νk

p0

λl−1dλ√
R(λ)

,

1 ≤ j ≤ N.

(4.16)
It is easy from (4.16)1 to calculate that

∂xρ
(1)
j =

N∑
l=1

N∑
k=1

Cjl
µl−1

k µk,x√
R(µk)

=
N∑

l=1

N∑
k=1

Cjl
−µl−1

k
N∏

i=1,i�=k

(µk − µi)
. (4.17)

Taking advantage of the following known formulae [2],

Is �
N∑

k=1

µs
k

N∏
i=1,i�=k

(µk−µi)

= δs,N−1, 1 ≤ s ≤ N − 1,

IN = σ1IN−1, IN+1 = σ1IN − σ̄1IN−1.
(4.18)

Therefore,

∂xρ
(1)
j = −Ω(0)

j , Ω(0)
j = CjN , 1 ≤ j ≤ N. (4.19)

Likewise, we can work out

∂yρ
(1)
j = Ω(1)

j , ∂tρ
(1)
j = Ω(2)

j , (4.20)

∂xρ
(2)
j = Ω(0)

j , ∂yρ
(2)
j = −Ω(1)

j , ∂tρ
(2)
j = −Ω(2)

j ,

(4.21)
where

Ω(1)
j = CjN−1 + σCjN ,

Ω(2)
j = CjN−2 + σCjN−1 + σ2CjN − σ̄CjN .

To summarize, it signifies that ρ
(1)
j and ρ

(2)
j can be re-

garded as linear superpositions,

ρ
(1)
j = −Ω(0)

j x + Ω(1)
j y + Ω(2)

j t + γ
(1)
j ,

ρ
(2)
j = Ω(0)

j x − Ω(1)
j y − Ω(2)

j t + γ
(2)
j ,

1 ≤ j ≤ N,

(4.22)
with integral constants

γ
(1)
j =

N∑
k=1

∫ µk(0,0,0)

p0

ωj , γ
(2)
j =

N∑
k=1

∫ νk(0,0,0)

p0

ωj.

5 The quasi-periodic solutions

Seen in the above presentation, (4.22) provides the spe-
cially explicit solutions in the Abel-Jacobi coordinates
ρ(1), ρ(2) of the KP and mKP equations. In order to ob-
tain the expression of solutions in the original coordinate
g, h pertinent to the KP and mKP equations, we discuss
the Jacobi inversion procedure,(

ρ(1), ρ(2)
)

=⇒ (µk, νk) =⇒ (p, q) =⇒ (g, h).

Let T be the lattice in C
N generated by 2N vectors

{δi, Bj}. Then we obtain the Jacobian T (Γ) = C
N/T .

The Abel map A
A : Div(Γ) → J(T),

is defined setting

A(p) =
(∫ p

p0

ω1, · · · ,

∫ p

p0

ωN

)
,

where p is an arbitrary point of Γ. Moreover, A can be
linearly extended into arbitrary divisors A(

∑
nkpk) =∑

nkA(pk). From [28,29], the Riemann theta functions
of Γ are defined as

θ(ζ) =
∑

z∈ZN

exp (πi〈Bz, z〉 + 2πi〈ζ, z〉), ζ ∈ C
N ,

(Bz, z) =
∑N

i,j=1 Bijzizj, (ζ, z) =
∑N

i=1 ziζi.

Consider two special divisors
∑N

k=1 p
(m)
k ,

A( N∑
k=1

p
(m)
k

)
=

N∑
k=1

A(p(m)
k

)
=

N∑
k=1

∫ p
(m)
k

p0

ω = ρ(m), m = 1, 2,

where p
(1)
k = (µk, ζ(µk)) and p

(2)
k = (νk, ζ(νk)). In ac-

cordance with the Riemann theorem [28], there exist
Riemann constants M (1), M (2) ∈ C

N determined by Γ
itself such that

• f (1)(λ) � θ(A(ζ(λ))−ρ(1) −M (1)) has exactly N zeros
at µ1, · · · , µN ;

• f (2)(λ) � θ(A(ζ(λ))−ρ(2) −M (2)) has exactly N zeros
at ν1, · · · , νN .

To make the functions single valued, the Riemann sur-
face Γ is cut along by all ak, bk to form a simply connected
region, whose boundary is denoted by γ. From the residue
formula, we have

N∑
j=1

µj = 1
2πi

∮
γ λd ln f (1)(λ) −

2∑
s=1

Res
λ=∞s

λd ln f (1)(λ),

N∑
j=1

νj = 1
2πi

∮
γ

λd ln f (2)(λ) −
2∑

s=1
Res

λ=∞s

λd ln f (2)(λ).

(5.1)
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Following [10], it is known that integrals

1
2πi

∮
γ

λd ln f (m)(λ) =
N∑

j=1

∫
aj

λωj � I(Γ), m = 1, 2,

are constants independent of ρ(m). The only remaining
requirement is the calculation of residues,

f (m)(λ)|λ=∞s = θ

(∫ p

p0

ω − ρ(m) − M (m)

)

= θ

(∫ p

∞s

ω − πs − ρ(m) − M (m)

)

= θ

(
· · · ,

∫ p

∞s

ωj − πsj − ρ
(m)
j − M

(m)
j , · · ·

)

= θ
(
· · · , ρ

(m)
j + M

(m)
j + πsj + (−1)s

×
(

CjNz +
1
2
(CjN−1 + σCjN )z2 + · · ·

)
, · · ·

)
= θ(m)

s (ρ(m) + M (m) + πs) + (−1)s+mθ(m)
s,x z + · · · ,

where

πsj =
∫ p0

∞s

ωj , s, m = 1, 2.

Consequently,

Res
λ=∞s

λd ln f (m)(λ) = (−1)s+m∂ ln θ(m)
s , (5.2)

where

θ(1)
s = θ

(
−Ω(0)x + Ω(1)y + Ω(2)t + Υs

)
,

θ(2)
s = θ

(
Ω(0)x − Ω(1)y − Ω(2)t + Λs

)
,

with

Υsj = γ
(1)
j + M

(1)
j + πsj ,

Λsj = γ
(2)
j + M

(2)
j + πsj , 1 ≤ j ≤ N.

It follows from (5.1) and (5.2) that

N∑
l=1

µl = I(Γ) + ∂x ln
θ
(1)
2

θ
(1)
1

,

N∑
l=1

νl = I(Γ) + ∂x ln
θ
(2)
1

θ
(2)
2

.

(5.3)
Substituting (5.3) into (4.4), we eventually derive a quasi-
periodic solution of the mKP equation

g = −∂x ln
θ(Ω(0)x − Ω(1)y − Ω(2)t + Λ1)
θ(Ω(0)x − Ω(1)y − Ω(2)t + Λ2)

− I(Γ) + σ,

(5.4)

and a special form of quasi-periodic solution of the
KP equation

h =
θ
(−Ω(0)x + Ω(1)y + Ω(2)t + Υ2

)
θ
(−Ω(0)x + Ω(1)y + Ω(2)t + Υ1

)
× θ

(
Ω(0)x − Ω(1)y − Ω(2)t + Λ2

)
θ
(
Ω(0)x − Ω(1)y − Ω(2)t + Λ1

)
θ
(
Ω(1)y + Ω(2)t + Υ1

)
θ
(
Ω(1)y + Ω(2)t + Υ2

) θ(−Ω(1)y − Ω(2)t + Λ1)
θ(−Ω(1)y − Ω(2)t + Λ2)

h(0, y, t),

(5.5)

which is different from the well-known expression
h(x, y, t) = 2∂2

x ln θ(Ω1x + Ω2y + Ω3t + Ω0) + h0 in the
references [5,13].

In conclusion, it is very difficult for a given
(2+1)-dimensional nonlinear evolution equation to be
decomposed into two (1+1)-dimensional soliton equa-
tions in the same hierarchy. Here we recover the (2+1)-
dimensional integrable models of mKP and KP equations
from two soliton equations in the cKdV hierarchy. The
mKP and KP equations are conditionally decomposed into
(1+1)-dimensional components that are easier to tackle
with available tools. Along with this idea, soliton equa-
tions are further reduced into integrable FDHSs, which
can be linearized on the Jacobian of a Riemann surface.
Appealing to the Jacobi inversion, some special quasi-
periodic solutions to the KP and mKP equations are si-
multaneously derived through a different decomposition to
those previously given in the literature. Meanwhile, this
shows that multi-dimensional nonlinear evolution equa-
tions possess abundant and various solutions from diverse
constructions. Theoretically speaking, some other known
(2+1)-dimensional nonlinear evolution equations can be
similarly studied in this constructive framework. For this
statement, we will provide some other examples in the
near future.
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